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Dynamics of driven interfaces in algebraically correlated random media
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In this work we consider the dynamics of interfaces embedded in algebraically correlated two-dimensional
random media. We study the isotropic percolation and the directed percolation lattice models away from and
at their percolation transitions. Away from the transition, the kinetic roughening of an interface in both of these
models is consistent with the power-law correlated Kardar-Parisi-Zhang universality class. Moreover, the
scaling exponents are found to be in good agreement with existing renormalization-group calculations. At the
transition, however, we find different behavior. In analogy to the case of a uniformly random background, the
scaling exponents of the interface can be related to those of the underlying percolation transition. For the
directed percolation case, both the growth and roughness exponents depend on the strength of correlations,
while for the isotropic case the roughness exponent is constant. For both cases, the growth exponent increases
with the strength of correlations. Our simulations are in good agreement with theory.
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[. INTRODUCTION self-affine interfaces with scaling exponents given by the
TKPZ equation, namely3=1/3,xy=1/2, andz= x/B3=3/2
The problem of interface dynamics in random media hag13].
received considerable attention during the past decade. Many It has been shown that at approaching the depinning tran-
different physical problems, such as the pinning and dynamsition with F—F_, where the noise is quenched in nature,
ics of flux lines in superconductofd], dynamics of slow different models may fall into distinct universality classes
combustion fronts in pap¢R—7], and imbibition(paper wet-  [14,15,11,6. In one of the cases, known as the directed per-
ting) [8—11], can be formulated in terms of interfaces propa-colation depinningDPD) universality class, an anisotropy is
gating in random media. Common theoretical approaches tgenerated in the system and the coefficient of the nonlinear
study these phenomena include lattice mofi&#® and vari- term\—c as the depinning transition is approach#d]. In
ous stochastic partial differential equations as the equation ahe limit of a nonmoving interface, the scaling exponents can
motion for the interface, the prototype of which is the cel-be related to those of directed percolation, with=y
ebrated Kardar-Parisi-Zhar(¢{PZ) type of nonlinear equa- =0.633. However, the moving interface is not self-affine and
tion [13,12: the exponents are differefit6]. In the isotropic universality
class, the system remains isotropic at the depinning transition
and consequenthh—0 in Eg. (1) corresponding to the
quenched Edwards-Wilkinsof@QEW) equation. The scaling
exponents in this case af~0.88 andy~1.25[16]. It has
Here h(x,t) is the height of the interface; is the driving  been recently showf6] that for isotropic systems there ex-
force, andn denotes the noise at the interface, which in theists a special case where the propagation of the front couples
most general case may exhibit nontrivial correlations into an underlyingsotropic percolation(IP) transition. In this
space and time and may also depend explicitlyh¢x,t). isotropic percolation depinnindIPD) case, the anisotropy
In the case wherep is a function ofh(x,t) and suffi- also vanishes but now the scaling exponents are given by
ciently short-ranged, the propagating interface may becomthose of the IP transition, witl8=1/d,,~0.88 andy=1,
pinned below a critical valué& of the driving force. For whered,,, is the minimum path exponent. In this case the
large values ofF (F>F.) then, the noise is effectively description of Eq(1) actually breaks down and the interface
Gaussian  white  noise  with (7(x,t))=0 and at the threshold is no longer self-affine.
(n(x,t) p(x",t"))=2D 8(x—x")S(t—t"). The behavior of When modeling kinetic roughening phenomena in disor-
lattice models belonging to this so-called thermal Kardar-dered systems, the underlying medignoise is usually as-
Parisi-Zhang(TKPZ) universality class is well understood sumed to be uniformly random without long-range correla-
for one-dimensionall1D) interfaces. These models generatetions. However, it is often the case that there exist nontrivial
correlations up to some cutoff length scdle. In particular,
it has been shown that in some cases spatial correlations in
* Author to whom correspondence should be addressed. Electront@ndom media follow to a good degree of approximation a
address: Tapio.Ala-Nissila@hut.fi power-law type of behavidrl7-20, and¢, may be consid-
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erably larger than the microscopic lengths in the system. Theharacterize the models are thus the size of the syktahe
way to at least approximately include the effect of spatial oraverage concentratioo, and the exponent of the density-
temporal correlations of the background in the dynamics is talensity autocorrelation functiop.
assume correlated noise in the corresponding continuum The dynamics of the isotropic percolation depinning
equation. The case of the KPZ equation with this kind ofmodel is defined by the following set of rules: During one
situation has been studied in many wof24—30. Results time step, each burning tree ignites all the nearest-neighbor
from these studies have been somewhat inconclusive, in pamburned trees and then becomes a burned tree. Once a tree
ticular when the spatial and temporal parts of the noise auhas become a burnt one, it does not change its status any-
tocorrelations follow power-law behavior. more. Also, an initially empty lattice site remains empty
In this paper we report the results of extensive numericathroughout the simulation. The spreading rules themselves
simulations of 2D cellular automata models where an interare isotropic without any specific growth direction. We de-
face propagates in an algebraically correlated random mdine the position of the interfach(x,t) at columnx to be
dium. The two different cases studied here include thegiven as the location of the highest burning or burnt tree in
nearest-neighbo{NN) “forest fire” model [3,6] where the each column. We note that this definition is sufficient to
IPD scenario can be realized at the percolation threstivld make the interface single-valued. Initially, the lattice sites in
and the simple DPD lattice modgB1] with un underlying the bottom row ¢y=0) are given the status of a burning tree
DP transition. We consider interface dynamics in these modand the system evolves according to the aforementioned
els both well above and close to their corresponding threshules.
olds. Our results show that well away from the transition, the The spreading rules for the directed percolation depinning
asymptotic dynamics of an interface in both models is foundDPD) model are almost the same as the rules for the IPD
to be consistent with the spatially power-law correlatedmodel. The important difference is that at each time step
Kardar-Parisi-ZhangPKP2) universality class. In particular, each burning tree ignites all its nearest-neighbor unburned
we find behavior in agreement with the predictions of Me-trees and all unburned trees and empty sites in the same
dinaet al. [21] for the growth exponeng [30]. At the tran-  column below the new burning trees. This so-called erosion
sition, the models display different behavior. In both casesof the overhangs process makes the model anisotropic and
the scaling exponents can be related to those of the underlghanges the universality class at the depinning transition. It
ing percolation transition similar to the case of a uniformly also makes the interface single-valued. The position of the
random background. For the IPD model, the anisotropy vaninterface is defined in the same way as in the IPD model
ishes at the percolation threshold and the model belongs {@31].
the algebraically correlated IP universality class, whereas in

the DP case the nonlinearity diverges at the percolation lIl. CHARACTERIZATION OF INTERFACE

threshold and the exponents for the nonmoving interface are ROUGHENING

given by those of the algebraically correlated DP universality

class. This implies that for both models, the expongrin- In order to quantitatively characterize the kinetic rough-

creases with the strength of correlations. For the IPD modegning of the interface, we have considered the following
the roughness exponegt=1 while for the DPD casg=1  quantities[12,33. First, theglobal width w(c,t,L) of the
independent of the background correlations. Our numericadnterface is defined by
results are in good agreement with theory.

The rest of this paper is organized as follows. In Sec. Il w2(c,t,L)=([h(r,t)—h(r,t)]?), 2
the models are introduced and the known results for uni-
formly random media are summarized briefly. In Secs. lllwhere the overbar denotes a spatial average over the system
and IV the results of Monte Carlo simulations for the two of sizel, and brackets denote configuration averaging. Cor-
models in algebraically correlated random media are prerespondingly, théocal width of the interfacev(c,t) can be
sented. Finally, in Sec. V we conclude and discuss our redefined as
sults.

wZ(c,n)=((h(r,t)—(h(r,)),1%,), 3

l. MODELS where the notatio),, now denotes spatial averaging over

In this section we review the models and the results fronfll subsystems of siz€ of a system of total size [34]. For
earlier studies. We consider 2D “forest firefor “imbibi- ~ growing self-affine interfaces, both the global and local
tion”) types of models defined on a square lattice of size Widths satisfy the Family-Viscek scaling relati¢85] and
x L with periodic boundary conditions in thedirection and have asymptotic behavior given by
free boundary conditions in thg direction. The status of a
given lattice site in the models can be one of the following:
(i) an empty site(ii) a site occupied by an unburned tree,
(iii ) a site occupied by a burning tree, (@) a site occupied
by a burned tree. Initially, a fractioo=(c(x,y)) of the sites and correspondingly fow (t). The quantitiesd and y de-
is occupied by trees. In the present case, the positions of tHme the growth and roughness exponents, respectively, and
trees are determined using an algorithm that generates spatjat= 8z. We note that in addition to using the width, scaling
long-range power-law-type correlatiofi32], so that{[c(r) exponents can be obtained by using the height-height differ-
—c]c(0)—c]y=r*2 up to £,~L. The parameters that ence correlation function,

th for t<L?

w(t,L)~ LX for t>L7?

(4)
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Cr ) =([Sh(Fo,to)— Sh(To+ Mt + DD, (5) 06
0.55
with sh=h—h, in the appropriate regimg42]. 0.5
In some cases the interfaces may exhibit multiscaling '
[36,37. This is revealed by the existence of different scaling 0.45 +
exponents for different moments of the height distribution. © 04 +
Furthermore, some models may show anomalous scaling in )
the local width[33,37]. In this case, the scaling of (t) is 0.35
given by 03 E
W, (t)~4 ¢ octPx for /?<t<L? (6) 02
0 2

/ Xioc| 2P+ for /?<L?<t, 1
2-p
where xoc IS the local roughness exponent apg =(x

— Xioad)/Z. Corresponding scaling forms can also be written
for the correlation functiong33]. This behavior was demon-
strated recently for the QEW equation, wigh,.=1 and

FIG. 1. The growth exponeng(p) vs p for the IPD case well
abovec* at c=0.99[49]. The data are for 20482048 systems
averaged over 500 configurations. The straight line shows the pre-
diction of Medinaet al. [21] for the PKPZ equation.

B,~0.21[38].
V. THE CASE OF ALGEBRAICALLY CORRELATED
IV. ISOTROPIC AND DIRECTED PERCOLATION BACKGROUND
DEPINNING MODELS IN A UNIFORMLY RANDOM

BACKGROUND In this section we present the results of extensive numeri-
_ _ ~ cal work on the IPD and DPD lattice models with an alge-
Itis well established that fdf >F the quenched noise in praically correlated spatial distribution of reactants. In this

Eq. (1) can be replaced by thermal noise for scales mucltase the two-point correlation function asymptotically satis-
larger than the size of the pinned regid®9]. The corre- fies

sponding TKPZ exponents have been numerically verified

for both the DPO12] and the IPD 6] models. However, in <C(F)C(FI)>N(Ar)—p/25[(AX)2+(Ay)ZJ—p/U, (9)
the vicinity of the percolation transition the corresponding
correlation length diverges leading to different behavior. In
the IP case, we have previously shop) that the con-
tinuum description of Eq(1) breaks down close to=c*
~0.59275 and the scaling exponents §(t) <¢(c) are di-
rectly related to those of the IP transitic’@§||(t)~t1/Z and
&(c) denote the lateral correlation length of the moving in-
terface and the percolation correlation length, respecfjvely
The global scaling exponents are given =1 and z
=dyr=~1.13, whered,;, is the minimum path exponent. In
addition, the IPD model shows multiscaling and anomalou
scaling of the local width. Close to the transition, the averag
velocity of the interface vanishes as

where Ax=|x—x'|, Ay=|y—y’|, and Ar=|r—r’|, and
c(x,y) denotes the local density of reactants.

A convenient method for generating an algebraically cor-
related distribution on a lattice is the so-called modified Fou-
rier filtering method32], which allows one to vary the ex-
ponentp for a givenc. This method allows one to generate
power-law-type correlations extending through most of the
system, i.e., the cutoff,~L. A drawback of this method is
hat the correlations have to be generated for the whole lat-
iice initially. This severely limits the maximum system sizes
available for simulations. In our case, the systems were typi-
cally of size 204& 2048.

v(c)~(c—c*)’, 7
A. IPD and DPD models away from the percolation threshold
and we estimated the velocity exponent to have the vélue
~0.17. This is in agreement with the scaling relati®n (z
—x)v, wherev=4/3 is the IP correlation length exponent.

For the DPD model the situation is somewhat different.
At the DP transitionc* ~0.53[10] there are two correlation
lengths that behave as

Let us first discuss our results in the limit of relatively
high concentrations, i.e., wheifc) <§(t)<¢,. In the case
of the IPD model we find that gsis varied between 2 and 0,
the growth exponeng depends om. In Fig. 1 we show the
numerical results foB vs 2—p. First, we note thaij3 is
approximately a constant{1/3) for 2.0=p=1.3, and that it

g"f~|c—c*|*VH and &P~|c—c*| 7", (8)  increases for decreasingfor 0<p=<1.0.

Our numerical estimates foB(p) agree well with the
and the scaling exponents of tm®nmoving interfaceare  renormalization-group calculations of the KPZ equation with
given by the ratio of the perpendicular exponent to the paralgebraically correlated noise by Medietal.[21,30. This
allel one, i.e.x=p=v, /»j=0.633(1) ancz=1[10,11,4Q. may not be surprising, since it is conceivable that an alge-
The corresponding velocity exponentds-0.64[16,41]. The  braically correlated reactant field should translate into an al-
moving interface close to*, however, is not self-affine and 9gebraically correlated effective noise at the interface. Using a
the exponents change. The exponghiand y as determined Simple geometric construction, it can be argued that the ef-
from w(t,L) are about 0.#0.8(7,11,16,42 fective noisen(F) at the interface satisfies
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FIG. 2. Percolation thresholds, (filled squaresandcy; (filled _ ]
circles vs p for the IPD and DPD models as obtained from the ~ FIG. 3. Velocity exponentsi(p) vs p for the IPD (filled

scaling of the interface velocity(c). The results from Ref43]are ~ Squaresand DPD(filled circles models. Our results are close to
shown with open circles. See text for details. the data of Prakaset al.[43] shown with open circles.

the DPD case, however, we find a value ot p=2 (un-
correlated backgroundmuch lower than those reported in
the literaturg/11,16,41.

Let us next make the assumption that the slopes are small, Again, we can relate the exponents characterizing the in-
i.e., thatAh<Ax. Then it is plausible that thAh term can terface to the ones characterizing the critical percolation
be neglected. These assumptions lead to an effective noiseéluster. Let us first discuss the isotropic case. First, due to the
the interface given by isotropy of the system, fog(t)<&(c) we expecty(p) = x

=1 for the global roughness exponent. Second, a previous
- o [ pl2 study of the correlated site isotropic percolation problem
(m(r)m(r’)~|x=x"|7#, (1D [43] revealed that although the fractal dimension of the per-
colation cluster does not depend pn the minimum path
Furthermore, it is plausible that derivative terms in the effec-exponent is a function gb. In other words, using the argu-
tive equation of motion for the interface arise from the mi- ment thatz=z(p)=d.(p) and xy=1, it follows that 8
croscopic ignition rules, and therefore they should be the=3(p). In particular, 8 should increase ap=2.0—0.0
same as in the uncorrelated nearest-neighbor case. Therefof43].
the leading effect of the spatially correlated reactant distri- Sincec* (p) is not known very accurately, we estimated
bution is to cause the noise correlations at the interface to bine growth exponenB(p) with several different concentra-
algebraically correlated in space. Hence, we expect the intetions near the approximate percolation threshold. Then we
face to display dynamics in accordance with the algebraehose our best estimate to be the valugsathat displayed
ically correlated KPZ universality class, in agreement withthe longest scaling region and had the largest viddé In
numerical results. Fig. 4 we show the results of our simulations for 8192

We note that similar arguments apply for the DPD casex512 lattices averaged over 200 configurations. The value
too. To this end we have simulated the DPD model gor of the growth exponent depends clearly on the strength of the
=0.98(12) and find3=0.373), andp=0.15(5) and find correlations and increases as2.0—0.0, as expected. The
B=0.492), in agreement with the behavior of the IPD first point,p=2, has been taken from our previous stliély
model. and has smaller errors than the other points in Fig. 4. In Fig.
4 we also show results obtained using the valued gf,
obtained from Ref[43], whereL=104.

The separate point in Fig. 4 marked with a diamond is the

Let us next discuss the behavior of the interface in theesult from a simulation where we used the 2D square lattice
vicinity of c=c*(p). In Fig. 2 we showcj, andcgp versusp Ising model to produce the long range correlations in the
as obtained by calculating the velocigfc) of the interface lattice. Namely, exactly at the critical temperatufg the
and findingc* (p) and 6(p) such thatv displays the best Ising model generates long range correlations in the lattice
scaling according ta~[c—c*(p)]%®). We note that the with an exponenp=0.25[45]. This method is applicable for
value of the percolation threshold depends on the strength dhe IPD model at* because the critical point is also the
the correlation* =c*(p) and it is not known very accu- percolation point of the latticd46]. The value of B(L
rately [43]. The values of the velocity exponent obtained by = 1000) obtained by this method is consistent with our other
using this method are shown in Fig. 3. The valu®afeems  estimates.
to decrease slowly gs goes from 2-0. Our results are in For the DPD model, we applied the same method of Ref.
good agreement with Prakashal.[43] for the IPD case but [32] for generating the power-law correlations in the lattice.
the system sizes here are much larger than in their study. FGihe same methods as in the IPD case were used to find the

(n(r)p(r"))~(Ar)~P2~[(Ax)%+ (Ah)2]"*V. (10)

B. IPD and DPD models at the percolation threshold



PRE 59 DYNAMICS OF DRIVEN INTERFACES N.. .. 2681

1.1 VI. SUMMARY AND CONCLUSIONS

In this work we have studied the dynamics of interfaces in
algebraically correlated random media through Monte Carlo
simulations of two different lattice cellular automata model.
These include the two cases where the pinning of the emerg-
ing interface is due to either an isotropic or a directed per-
@ 0.9 colation transition of the underlying lattice. We find that well

i above the percolation transition, the dynamics is consistent
with the spatially power-law correlated Kardar-Parisi-Zhang
0.8 (PKP2 [21,3Q universality class for both models. At the
percolation transition, however, we find different behavior
for the two cases. The exponents that characterize the inter-
faces at the transition are related to the exponents of the

1 ) percolation cluster in analogy to the uniformly random case
2-p [6,11]. In the present case this means that for the IPD case,
x=1 but z and thus alsg3 depend onp. Our numerical

FIG. 4. Growth exponents* (p) vs p at the depinning transi- estimates of these exponents are in reasonably good agree-
tion for the IPD (filled squares and DPD(filled circle9 models.  ment with other work$43]. For the DPD modelz=1 inde-

The value obtained using the 2D Ising configurationTatcorre-  pendent of the correlations whij@ and y depend orp and
sponding top=0.25 is shown by a diamond. Values B{p) ob-  should be equal to each other.

tained from the data of Ref43] are shown by open circles. An interesting physical example where the scenario of a
power-law correlated background could be realized is that of

. dynamics of slow combustion in papgz,7]. Through mea-
growth exponent(p) and the velocity exponent{p) for suring the actual density distributions of laboratory manufac-

the moving interface. The results from our simulation are red paper sheets, it has been demonstrated that very low

showr) in Figs. 3 and 4.-The value of the growth exponenhensity paper may exhibit a power-law type of density cor-
B(p) increases almost linearly gs goes from 20, and  r¢|ations that exist up to about 15 times the fiber length, i.e.,
B(p=2) (uncorrelated casds in good agreement with the he scale of a few cif20]. In the early experiments of Zhang
estimates reported in the |Itel’atL[rE12,11,l@ The data for et al, where |ow_density paper was burrial a value of the
the velocity exponent(p) are not sufficiently good to de- roughness exponent was reported in agreement with the DPD
termine the behavior of(p) very accurately. The high value case. The new experimental results of Maunukselal. [7]
of the last point may indicate that the velocity exponef) on higher density paper show that asymptotically the expo-
increases ap goes from 2-0. nents are consistent with the TKPZ case. It would be of great
We assume that the arguments leading to the relation interest to study slow combustion using paper with well-
=d, [11,47 are valid also in the correlated case. In onecharacterized intermediate power-law correlations in density,
dimension the minimum path exponent for the DPD modelsince the PKPZ scenario could perhaps be realized there.
equals unity independent of spatial correlations. Thus, in the
correlated case=1 also, andy(p)=B(p). Assuming that
the scaling relatiord(p) =v|(p)[z— x(p)] holds, our data This work has been supported in part by the Academy of
can be used to estimate the parallel correlation length expdrinland and a grant from the Nokia corporation. We wish to
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