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Dynamics of driven interfaces in algebraically correlated random media
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In this work we consider the dynamics of interfaces embedded in algebraically correlated two-dimensional
random media. We study the isotropic percolation and the directed percolation lattice models away from and
at their percolation transitions. Away from the transition, the kinetic roughening of an interface in both of these
models is consistent with the power-law correlated Kardar-Parisi-Zhang universality class. Moreover, the
scaling exponents are found to be in good agreement with existing renormalization-group calculations. At the
transition, however, we find different behavior. In analogy to the case of a uniformly random background, the
scaling exponents of the interface can be related to those of the underlying percolation transition. For the
directed percolation case, both the growth and roughness exponents depend on the strength of correlations,
while for the isotropic case the roughness exponent is constant. For both cases, the growth exponent increases
with the strength of correlations. Our simulations are in good agreement with theory.
@S1063-651X~99!04003-9#
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I. INTRODUCTION

The problem of interface dynamics in random media h
received considerable attention during the past decade. M
different physical problems, such as the pinning and dyna
ics of flux lines in superconductors@1#, dynamics of slow
combustion fronts in paper@2–7#, and imbibition~paper wet-
ting! @8–11#, can be formulated in terms of interfaces prop
gating in random media. Common theoretical approache
study these phenomena include lattice models@12# and vari-
ous stochastic partial differential equations as the equatio
motion for the interface, the prototype of which is the c
ebrated Kardar-Parisi-Zhang~KPZ! type of nonlinear equa
tion @13,12#:

]h~x,t !

]t
5n¹2h~x,t !1

l

2
u¹h~x,t !u21F1h. ~1!

Here h(x,t) is the height of the interface,F is the driving
force, andh denotes the noise at the interface, which in t
most general case may exhibit nontrivial correlations
space and time and may also depend explicitly onh(x,t).

In the case whereh is a function ofh(x,t) and suffi-
ciently short-ranged, the propagating interface may beco
pinned below a critical valueFc of the driving force. For
large values ofF (F@Fc) then, the noise is effectively
Gaussian white noise with ^h(x,t)&50 and
^h(x,t)h(x8,t8)&52Dd(x2x8)d(t2t8). The behavior of
lattice models belonging to this so-called thermal Kard
Parisi-Zhang~TKPZ! universality class is well understoo
for one-dimensional~1D! interfaces. These models genera
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self-affine interfaces with scaling exponents given by
TKPZ equation, namelyb51/3,x51/2, andz5x/b53/2
@13#.

It has been shown that at approaching the depinning t
sition with F→Fc , where the noise is quenched in natu
different models may fall into distinct universality class
@14,15,11,6#. In one of the cases, known as the directed p
colation depinning~DPD! universality class, an anisotropy i
generated in the system and the coefficient of the nonlin
terml→` as the depinning transition is approached@14#. In
the limit of a nonmoving interface, the scaling exponents c
be related to those of directed percolation, withb5x
50.633. However, the moving interface is not self-affine a
the exponents are different@16#. In the isotropic universality
class, the system remains isotropic at the depinning trans
and consequentlyl→0 in Eq. ~1! corresponding to the
quenched Edwards-Wilkinson~QEW! equation. The scaling
exponents in this case areb'0.88 andx'1.25 @16#. It has
been recently shown@6# that for isotropic systems there ex
ists a special case where the propagation of the front cou
to an underlyingisotropic percolation~IP! transition. In this
isotropic percolation depinning~IPD! case, the anisotropy
also vanishes but now the scaling exponents are given
those of the IP transition, withb51/dmin'0.88 andx51,
wheredmin is the minimum path exponent. In this case t
description of Eq.~1! actually breaks down and the interfac
at the threshold is no longer self-affine.

When modeling kinetic roughening phenomena in dis
dered systems, the underlying medium~noise! is usually as-
sumed to be uniformly random without long-range corre
tions. However, it is often the case that there exist nontriv
correlations up to some cutoff length scalejp . In particular,
it has been shown that in some cases spatial correlation
random media follow to a good degree of approximation
power-law type of behavior@17–20#, andjp may be consid-
ic
2677 ©1999 The American Physical Society
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erably larger than the microscopic lengths in the system.
way to at least approximately include the effect of spatial
temporal correlations of the background in the dynamics i
assume correlated noise in the corresponding continu
equation. The case of the KPZ equation with this kind
situation has been studied in many works@21–30#. Results
from these studies have been somewhat inconclusive, in
ticular when the spatial and temporal parts of the noise
tocorrelations follow power-law behavior.

In this paper we report the results of extensive numer
simulations of 2D cellular automata models where an in
face propagates in an algebraically correlated random
dium. The two different cases studied here include
nearest-neighbor~NN! ‘‘forest fire’’ model @3,6# where the
IPD scenario can be realized at the percolation thresholdc* ,
and the simple DPD lattice model@31# with un underlying
DP transition. We consider interface dynamics in these m
els both well above and close to their corresponding thre
olds. Our results show that well away from the transition,
asymptotic dynamics of an interface in both models is fou
to be consistent with the spatially power-law correlat
Kardar-Parisi-Zhang~PKPZ! universality class. In particular
we find behavior in agreement with the predictions of M
dina et al. @21# for the growth exponentb @30#. At the tran-
sition, the models display different behavior. In both cas
the scaling exponents can be related to those of the und
ing percolation transition similar to the case of a uniform
random background. For the IPD model, the anisotropy v
ishes at the percolation threshold and the model belong
the algebraically correlated IP universality class, wherea
the DP case the nonlinearity diverges at the percola
threshold and the exponents for the nonmoving interface
given by those of the algebraically correlated DP universa
class. This implies that for both models, the exponentb in-
creases with the strength of correlations. For the IPD mo
the roughness exponentx51 while for the DPD casez51
independent of the background correlations. Our numer
results are in good agreement with theory.

The rest of this paper is organized as follows. In Sec
the models are introduced and the known results for u
formly random media are summarized briefly. In Secs.
and IV the results of Monte Carlo simulations for the tw
models in algebraically correlated random media are p
sented. Finally, in Sec. V we conclude and discuss our
sults.

II. MODELS

In this section we review the models and the results fr
earlier studies. We consider 2D ‘‘forest fire’’~or ‘‘imbibi-
tion’’ ! types of models defined on a square lattice of sizeL
3L with periodic boundary conditions in thex direction and
free boundary conditions in they direction. The status of a
given lattice site in the models can be one of the followin
~i! an empty site,~ii ! a site occupied by an unburned tre
~iii ! a site occupied by a burning tree, or~iv! a site occupied
by a burned tree. Initially, a fractionc[^c(x,y)& of the sites
is occupied by trees. In the present case, the positions o
trees are determined using an algorithm that generates sp
long-range power-law-type correlations@32#, so that^@c(r )
2c#@c(0)2c#&}r 2r/2 up to jp'L. The parameters tha
e
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characterize the models are thus the size of the systemL, the
average concentrationc, and the exponent of the density
density autocorrelation functionr.

The dynamics of the isotropic percolation depinni
model is defined by the following set of rules: During on
time step, each burning tree ignites all the nearest-neigh
unburned trees and then becomes a burned tree. Once a
has become a burnt one, it does not change its status
more. Also, an initially empty lattice site remains emp
throughout the simulation. The spreading rules themse
are isotropic without any specific growth direction. We d
fine the position of the interfaceh(x,t) at columnx to be
given as the location of the highest burning or burnt tree
each column. We note that this definition is sufficient
make the interface single-valued. Initially, the lattice sites
the bottom row (y50) are given the status of a burning tre
and the system evolves according to the aforementio
rules.

The spreading rules for the directed percolation depinn
~DPD! model are almost the same as the rules for the I
model. The important difference is that at each time s
each burning tree ignites all its nearest-neighbor unbur
trees and all unburned trees and empty sites in the s
column below the new burning trees. This so-called eros
of the overhangs process makes the model anisotropic
changes the universality class at the depinning transition
also makes the interface single-valued. The position of
interface is defined in the same way as in the IPD mo
@31#.

III. CHARACTERIZATION OF INTERFACE
ROUGHENING

In order to quantitatively characterize the kinetic roug
ening of the interface, we have considered the followi
quantities@12,33#. First, theglobal width w(c,t,L) of the
interface is defined by

w2~c,t,L ![^@h~rW,t !2h~rW,t !#2&, ~2!

where the overbar denotes a spatial average over the sy
of sizeL, and brackets denote configuration averaging. C
respondingly, thelocal width of the interfacewl (c,t) can be
defined as

wl
2 ~c,t ![^Š@h~rW,t !2^h~rW,t !& l #2

‹l &, ~3!

where the notation̂& l now denotes spatial averaging ov
all subsystems of sizel of a system of total sizeL @34#. For
growing self-affine interfaces, both the global and loc
widths satisfy the Family-Viscek scaling relation@35# and
have asymptotic behavior given by

w~ t,L !;H tb for t!Lz,

Lx for t@Lz,
~4!

and correspondingly forwl (t). The quantitiesb andx de-
fine the growth and roughness exponents, respectively,
x5bz. We note that in addition to using the width, scalin
exponents can be obtained by using the height-height dif
ence correlation function,
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C~r ,t !5^@dh~rW0 ,t0!2dh~rW01rW,t01t !#2&, ~5!

with dh[h2h̄, in the appropriate regimes@12#.
In some cases the interfaces may exhibit multiscal

@36,37#. This is revealed by the existence of different scali
exponents for different moments of the height distributio
Furthermore, some models may show anomalous scalin
the local width@33,37#. In this case, the scaling ofwl (t) is
given by

wl ~ t !;H tb for t!l z,

l x loctb
* for l z!t!Lz,

l x locLzb
* for l z!Lz!t,

~6!

where x loc is the local roughness exponent andb* 5(x
2x loc)/z. Corresponding scaling forms can also be writt
for the correlation functions@33#. This behavior was demon
strated recently for the QEW equation, withx loc51 and
b* '0.21 @38#.

IV. ISOTROPIC AND DIRECTED PERCOLATION
DEPINNING MODELS IN A UNIFORMLY RANDOM

BACKGROUND

It is well established that forF@Fc the quenched noise in
Eq. ~1! can be replaced by thermal noise for scales m
larger than the size of the pinned regions@39#. The corre-
sponding TKPZ exponents have been numerically verifi
for both the DPD@12# and the IPD@6# models. However, in
the vicinity of the percolation transition the correspondi
correlation length diverges leading to different behavior.
the IP case, we have previously shown@6# that the con-
tinuum description of Eq.~1! breaks down close toc5c*
'0.59275 and the scaling exponents forj uu(t)!j(c) are di-
rectly related to those of the IP transition@j uu(t);t1/z and
j(c) denote the lateral correlation length of the moving
terface and the percolation correlation length, respective#.
The global scaling exponents are given byx51 and z
5dmin'1.13, wheredmin is the minimum path exponent. I
addition, the IPD model shows multiscaling and anomalo
scaling of the local width. Close to the transition, the avera
velocity of the interface vanishes as

v~c!;~c2c* !u, ~7!

and we estimated the velocity exponent to have the valuu
'0.17. This is in agreement with the scaling relationu5(z
2x)n, wheren54/3 is the IP correlation length exponen

For the DPD model the situation is somewhat differe
At the DP transitionc* '0.53 @10# there are two correlation
lengths that behave as

j i
D;uc2c* u2n i and j'

D;uc2c* u2n', ~8!

and the scaling exponents of thenonmoving interfaceare
given by the ratio of the perpendicular exponent to the p
allel one, i.e.,x5b5n' /n i.0.633(1) andz51 @10,11,40#.
The corresponding velocity exponent isu'0.64@16,41#. The
moving interface close toc* , however, is not self-affine an
the exponents change. The exponentsb andx as determined
from w(t,L) are about 0.720.8 @7,11,16,42#.
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V. THE CASE OF ALGEBRAICALLY CORRELATED
BACKGROUND

In this section we present the results of extensive num
cal work on the IPD and DPD lattice models with an alg
braically correlated spatial distribution of reactants. In th
case the two-point correlation function asymptotically sa
fies

^c~rW !c~rW8!&;~Dr !2r/2[@~Dx!21~Dy!2#2r/u, ~9!

where Dx5ux2x8u, Dy5uy2y8u, and Dr 5urW2rW8u, and
c(x,y) denotes the local density of reactants.

A convenient method for generating an algebraically c
related distribution on a lattice is the so-called modified Fo
rier filtering method@32#, which allows one to vary the ex
ponentr for a givenc. This method allows one to genera
power-law-type correlations extending through most of
system, i.e., the cutoffjp;L. A drawback of this method is
that the correlations have to be generated for the whole
tice initially. This severely limits the maximum system siz
available for simulations. In our case, the systems were t
cally of size 204832048.

A. IPD and DPD models away from the percolation threshold

Let us first discuss our results in the limit of relative
high concentrations, i.e., whenj(c)!j uu(t)!jp . In the case
of the IPD model we find that asr is varied between 2 and 0
the growth exponentb depends onr. In Fig. 1 we show the
numerical results forb vs 22r. First, we note thatb is
approximately a constant ('1/3) for 2.0>r*1.3, and that it
increases for decreasingr for 0,r&1.0.

Our numerical estimates forb(r) agree well with the
renormalization-group calculations of the KPZ equation w
algebraically correlated noise by Medinaet al. @21,30#. This
may not be surprising, since it is conceivable that an al
braically correlated reactant field should translate into an
gebraically correlated effective noise at the interface. Usin
simple geometric construction, it can be argued that the
fective noiseh(rW) at the interface satisfies

FIG. 1. The growth exponentb(r) vs r for the IPD case well
abovec* at c50.99 @49#. The data are for 204832048 systems
averaged over 500 configurations. The straight line shows the
diction of Medinaet al. @21# for the PKPZ equation.
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^h~rW !h~rW8!&;~Dr !2r/2;@~Dx!21~Dh!2#2r/u. ~10!

Let us next make the assumption that the slopes are sm
i.e., thatDh!Dx. Then it is plausible that theDh term can
be neglected. These assumptions lead to an effective noi
the interface given by

^h~rW !h~rW8!&;ux2x8u2r/2. ~11!

Furthermore, it is plausible that derivative terms in the eff
tive equation of motion for the interface arise from the m
croscopic ignition rules, and therefore they should be
same as in the uncorrelated nearest-neighbor case. There
the leading effect of the spatially correlated reactant dis
bution is to cause the noise correlations at the interface t
algebraically correlated in space. Hence, we expect the in
face to display dynamics in accordance with the algeb
ically correlated KPZ universality class, in agreement w
numerical results.

We note that similar arguments apply for the DPD ca
too. To this end we have simulated the DPD model forr
50.98(12) and findb50.37(3), andr50.15(5) and find
b50.48(2), in agreement with the behavior of the IP
model.

B. IPD and DPD models at the percolation threshold

Let us next discuss the behavior of the interface in
vicinity of c5c* (r). In Fig. 2 we showcIP* andcDP* versusr
as obtained by calculating the velocityv(c) of the interface
and findingc* (r) and u(r) such thatv displays the bes
scaling according tov;@c2c* (r)#u(r). We note that the
value of the percolation threshold depends on the strengt
the correlationsc* 5c* (r) and it is not known very accu
rately @43#. The values of the velocity exponent obtained
using this method are shown in Fig. 3. The value ofu seems
to decrease slowly asr goes from 2→0. Our results are in
good agreement with Prakashet al. @43# for the IPD case but
the system sizes here are much larger than in their study.

FIG. 2. Percolation thresholdscIP* ~filled squares! andcDP* ~filled
circles! vs r for the IPD and DPD models as obtained from t
scaling of the interface velocityv(c). The results from Ref.@43# are
shown with open circles. See text for details.
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the DPD case, however, we find a value ofu at r52 ~un-
correlated background! much lower than those reported i
the literature@11,16,41#.

Again, we can relate the exponents characterizing the
terface to the ones characterizing the critical percolat
cluster. Let us first discuss the isotropic case. First, due to
isotropy of the system, forj uu(t)!j(c) we expectx(r)5x
51 for the global roughness exponent. Second, a prev
study of the correlated site isotropic percolation proble
@43# revealed that although the fractal dimension of the p
colation cluster does not depend onr, the minimum path
exponent is a function ofr. In other words, using the argu
ment that z5z(r)5dmin(r) and x51, it follows that b
5b(r). In particular, b should increase asr52.0→0.0
@43#.

Sincec* (r) is not known very accurately, we estimate
the growth exponentb(r) with several different concentra
tions near the approximate percolation threshold. Then
chose our best estimate to be the value ofb that displayed
the longest scaling region and had the largest value@44#. In
Fig. 4 we show the results of our simulations for 81
3512 lattices averaged over 200 configurations. The va
of the growth exponent depends clearly on the strength of
correlations and increases asr52.0→0.0, as expected. The
first point,r52, has been taken from our previous study@6#
and has smaller errors than the other points in Fig. 4. In F
4 we also show results obtained using the values ofdmin
obtained from Ref.@43#, whereL5104.

The separate point in Fig. 4 marked with a diamond is
result from a simulation where we used the 2D square lat
Ising model to produce the long range correlations in
lattice. Namely, exactly at the critical temperatureTc the
Ising model generates long range correlations in the lat
with an exponentr50.25@45#. This method is applicable fo
the IPD model atc* because the critical point is also th
percolation point of the lattice@46#. The value of b(L
51000) obtained by this method is consistent with our ot
estimates.

For the DPD model, we applied the same method of R
@32# for generating the power-law correlations in the lattic
The same methods as in the IPD case were used to find

FIG. 3. Velocity exponentsu(r) vs r for the IPD ~filled
squares! and DPD~filled circles! models. Our results are close t
the data of Prakashet al. @43# shown with open circles.
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growth exponentsb(r) and the velocity exponentsu(r) for
the moving interface. The results from our simulation a
shown in Figs. 3 and 4. The value of the growth expon
b(r) increases almost linearly asr goes from 2→0, and
b(r52) ~uncorrelated case! is in good agreement with th
estimates reported in the literature@7,12,11,16#. The data for
the velocity exponentu(r) are not sufficiently good to de
termine the behavior ofu(r) very accurately. The high valu
of the last point may indicate that the velocity exponentu(r)
increases asr goes from 2→0.

We assume that the arguments leading to the relatioz
5dmin @11,47# are valid also in the correlated case. In o
dimension the minimum path exponent for the DPD mo
equals unity independent of spatial correlations. Thus, in
correlated casez51 also, andx(r)5b(r). Assuming that
the scaling relationu(r)5n i(r)@z2x(r)# holds, our data
can be used to estimate the parallel correlation length ex
nentn i as a function ofr.

FIG. 4. Growth exponentsb* (r) vs r at the depinning transi-
tion for the IPD ~filled squares! and DPD~filled circles! models.
The value obtained using the 2D Ising configuration atTc corre-
sponding tor50.25 is shown by a diamond. Values ofb(r) ob-
tained from the data of Ref.@43# are shown by open circles.
n,
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e
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VI. SUMMARY AND CONCLUSIONS

In this work we have studied the dynamics of interfaces
algebraically correlated random media through Monte Ca
simulations of two different lattice cellular automata mod
These include the two cases where the pinning of the em
ing interface is due to either an isotropic or a directed p
colation transition of the underlying lattice. We find that we
above the percolation transition, the dynamics is consis
with the spatially power-law correlated Kardar-Parisi-Zha
~PKPZ! @21,30# universality class for both models. At th
percolation transition, however, we find different behav
for the two cases. The exponents that characterize the in
faces at the transition are related to the exponents of
percolation cluster in analogy to the uniformly random ca
@6,11#. In the present case this means that for the IPD ca
x51 but z and thus alsob depend onr. Our numerical
estimates of these exponents are in reasonably good a
ment with other works@43#. For the DPD model,z51 inde-
pendent of the correlations whileb andx depend onr and
should be equal to each other.

An interesting physical example where the scenario o
power-law correlated background could be realized is tha
dynamics of slow combustion in paper@2,7#. Through mea-
suring the actual density distributions of laboratory manuf
tured paper sheets, it has been demonstrated that very
density paper may exhibit a power-law type of density c
relations that exist up to about 15 times the fiber length, i
the scale of a few cm@20#. In the early experiments of Zhan
et al., where low-density paper was burned@2#, a value of the
roughness exponent was reported in agreement with the D
case. The new experimental results of Maunukselaet al. @7#
on higher density paper show that asymptotically the ex
nents are consistent with the TKPZ case. It would be of gr
interest to study slow combustion using paper with we
characterized intermediate power-law correlations in dens
since the PKPZ scenario could perhaps be realized there
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@33# J. M. López and M. A. Rodrı´guez, Phys. Rev. E54, R2189
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